21-23 Aug. 2019 — London, UCL

Doctoral Summer School for Advanced Spatial Modelling:

Skills Workshop and Hackathon

Get good people together, treat them well and good projects will come.

The purpose of this workshop is threefold: firstly, to warm participants up to key quantitative methods and introduce them to core spatial modelling methods; secondly, apply these methods in the context of National Industrial Strategy - and in doing so, think about new governmental geography products and what future cities could look like; finally, foster collaborations opportunities between PhD students from different institutions through the hackathon and subsequent conference attendance award.

The techniques covered in this summer school come from geographical analysis and the hackathon on urban and infrastructure problems will be an opportunity to apply these.

Application timeline | Who are we looking for? | Syllabus and Tutors | Timetable

Why should I apply?

Successful applicants will receive…

Hackathon winners will receive…

So have a look at the Who are we looking for? section and complete this brief application form by the 19th of July 2019.

Application timeline

24th May

Applications open for EPSRC funded students

31st May

Applications open for all students

19th July

Application deadline

26th July

Successful participants invited to attend the summer school

2nd August

Deadline for accepting invitations

6th August

Accommodation and travel booked

21st August

Summer school begins!

Who are we looking for?

We are looking for up to 20 enthusiastic PhD students who would like to learn the basics of spatial data analysis, share their own methods, and work collaboratively to apply these techniques to interesting datasets.

We also want to bring together teams of up to 5 working from a diverse range of research domains. Ideally we want candidates who come might benefit from exposure to quantitative spatial analysis. We will be covering many topics in a short amount of time and some experience using tools such as Python, R and QGIS for geography analysis will be beneficial but not necessary.

Here are some bullet points listing some of the qualities we are looking for:


Nice to have

Still have question? Get in touch!

Syllabus and Tutors

The objective of the syllabus is to warm participants up to key quantitative methods and then introduce them to core spatial modelling methods. There will be a strong focus on demonstrating these methods with code snippets. Participants will see live coding examples they can experiment with and build upon for the hackathon. Over half the lesson time on the first two days is assigned to hands on coding and teamwork with the support of the course tutors.

Day 1

Room B09, 1-19 Torrington Place
London, W1CE 7HB

Day 1 will start by introducing important statistical measures, modelling techniques and cluster analysis. The second part of the day will cover working with vector spatial data and key spatial statistics.

Statistics 1: Zara Shabrina
Summarise and compare data visually
Simple linear regression

Statistics 2: Dr Georg Hanh
More regression models:
ANOVA, Logistic and Multiple Linear

Cluster analysis: Dr Thomas Oléron Evans
Similarity metrics
K-means, median and modes
Measures of quality

Spatial data and statistics 1: Bonnie Buyuklieva
UK administrative geographies
Spatial autocorrelation and interaction

Spatial data and statistics 2: Dr Robin Lovelace
Spatial data formats
Coordinate Reference Systems and Re-Projections

Spatial data and statistics 3: Dr David Murrell
Point Pattern Analysis
Spatial hypothesis testing

Day 2

Day 2 will start by covering the skills required to perform network analysis on geographic data. The second part of the day will cover working with raster data and satellite imagery.

Networks 1: Obi Sargoni
Directed vs undirected graphs
Adjacency matrices, node degree
Degree distribution

Networks 2: Dr Elsa Arcaute
Centrality and betweenness

Networks 3: Dr Neave O'Clery
Economic networks

Classifying satellite imagery 1: Matt Ng
Intro to satellite data
Stack, mosaic and clip raster data

Classifying satellite imagery 2: Dr Maxim Chernetskiy
Raster data classification

Classifying satellite imagery 3: Dr Andy MacLachlan
Working with Earth observation data
Applied Urban Heat Island analysis

Day 3


The last day is dedicated to working collaboratively to explore a research question by applying the methods covered in the summer school to spatial datasets. This will give participants the opportunity to practice the skills they have learnt with the support of their peers and summer school tutors.

Time has been set aside on the first two days of the summer school for exploring the datasets and formulating a research question. Road network data, satellite imagery data and point locations data will be provided for teams to work with but teams are also welcome to work with other spatial datasets.

Prizes for winning hackathon teams are:

Hackathon teams will be judged on the following criteria:

Application of spatial modelling techniques
Did the team apply apply a variety of methods suitably, going beyond the examples presented by tutors?

Addressing a research question
How well did the team address their research question?

Did the team produce high quality figures?

Did the team work well together, allowing all team members to contribute to the work?


Time Day 1 Day 2 Day 3
10:00 Statistics 1 Networks 1 Hackathon
10:30 Statistics 2 Networks 2
11:00 Cluster analysis Networks 3
11:30 Try methods Try methods
13:00 Lunch Lunch Lunch
14:00 Spatial data and statistics 1 Classifying satellite imagery 1 Hackathon
14:30 Spatial data and statistics 2 Classifying satellite imagery 2
15:00 Spatial data and statistics 3 Classifying satellite imagery 3
15:30 Break Break Break
16:00 Hackathon: Getting the data & brainstorming Hackathon: Data exploration & project plan Hackathon
17:00 Presentations and Prizes
18:00 Data Science and Industrial Strategy with CASA and the ONS Data Science Campus Evening events, dinner, drinks, etc